Lync

Endpoints of UCMA Applications


Network Endpoints

The Network endpoints are the agents that Microsoft Lync uses internally in the UCMA applications to represent the users’ agents in code by creating instances or objects of the UserEndpoint class or the ApplicationEndpoint class and can handle all operations that concern a single user agent with the assistant of other related classes.

UCMA application can run without any endpoints, but it would not be able to do any useful services or tasks because the application would have no SIP user agents to send or receive messages. Therefore, any useful UCMA application must when starting up initialize and establish at least one user endpoint or application endpoint.

UserEndpoint

The UserEndpoint class allows an application to perform communication operations on behalf of a single Lync Server user. When established, the user endpoint always registers with Lync Server and retrieves presence and contact information for specific user. Through the UserEndpoint class, you can perform contact and contact group operations as well as publish a presence, but because the user endpoint represents a single user, an application cannot use it to perform trusted operations such as impersonating another Lync Server user.

The UserEndpoint class is best suited for an application that acts on behalf of a number of different existing users simultaneously such as Web – based client applications (like Communicator Web Access)

We can use it also in Contact and Group Operations to perform contact list operations and Publishing presence information for a user which automatically assigns access control information and instance IDs to presence elements.

The user endpoint is not as robust in recovering from connection failures as the application endpoint, so it is less appropriate for server applications that must be highly available. When a user endpoint loses connectivity with Lync Server, it attempts to re-register with Lync Server once, but if this attempt fails it gives up and makes no further attempts to recover the connection.

ApplicationEndpoint

The ApplicationEndpoint class is acts for highly available server applications that provide a service to many different users simultaneously. It does not represent an individual user, it has a separate identity defined by a Contact object in Active Directory such as Automatic call distributors and Message broadcasting

Because an application endpoint is automatically trusted by Lync Server, it is able to “impersonate” any individual user in order to perform communications operations on behalf of that user.

The ApplicationEndpoint class is able to load – balance connections across several frontend servers. In addition, it is more persistent than the UserEndpoint class in recovering connectivity with Lync Server. When an application endpoint loses its connection to Lync Server, it goes into the Reestablishing state and tries to regain its connection with the server until it succeeds, regardless of how long it remains without a connection.

The application endpoint ’ s trusted status with Lync server allows it to perform conference operations that would otherwise be restricted to conference leaders, as well as some special operations that cannot be performed at all through the Lync client. It can also join conferences as a trusted participant; in this state, it is not shown in the conference roster and has the same rights as a conference leader.

Application endpoints are not able to perform any contact operations, nor can they publish presence.

Advertisements

Microsoft Lync 2013 SDK


Microsoft introduced the new Lync API release for Microsoft Lync 2013. Microsoft Lync 2013 SDK is the client-side API set that enables the integration and extension of Lync experiences.

With the Lync SDK, you can quickly add Lync 2013 features to an existing business application, extend the Lync client itself or, if you have the need, build a custom UI built atop the Lync client platform.

The Microsoft Lync 2013 SDK includes the Lync 2013 API, a managed-code (.NET) API that developers use to build applications that leverage the Microsoft Lync 2013 collaboration features. In addition to the Lync 2013 API, the Lync SDK includes a set of UI controls that can be used to add Lync features to a Microsoft Windows Presentation Foundation (WPF), or Microsoft Silverlight 4.0 application. The Lync 2013 SDK also ships with a set of working code samples and documentation to help you become a productive Lync developer as quickly as possible.

It is important to note the Lync SDK’s development model does require the Lync client to be installed on the user’s machine and the API is called from outside the Lync process, manipulating the same object model on which the Lync client is built.

Microsoft Lync Server 2013 SDK

The Microsoft Lync Server 2013 SDK includes the Microsoft Lync Server 2013 SIP Application API documentation, library (ServerAgent.DLL), application development tools, and sample applications.

The Lync Server 2013 SDK includes three Lync Server 2013 SIP Application API references that can be used to create Session Initiation Protocol (SIP) server applications that customize and extend the functionality of Microsoft Lync Server 2013:

  • SIP application manifest
  • Microsoft SIP Processing Language (MSPL)
  • Microsoft.Rtc.Sip namespace

This SDK is Intended for the Following Audiences

  • Developers who want to use application manifests and MSPL scripts to implement simple custom SIP message filtering and routing on computers in a Lync Server 2013 deployment.
  • Experienced SIP developers who want to create SIP-based managed code server applications that implement real-time content delivery or instant messaging infrastructure. This includes applications that work directly with SIP transaction objects or support multithreaded transactions.

What’s New

More than 70 new topics have been added to the SDK. These topics explain new features of Lync SDK as well as giving you a more in-depth look at features introduced in a previous release of the SDK.

New SDK Features

Lync SDK give you three new features will let you provide your custom application users with a complete collaboration experience. The three areas that we have enhanced the Lync SDK include:

  • Resource sharing. This feature allows a client to share a running process, desktop, or any one of the displays attached to a computer.
  • Persistent chat support. You can build a persistent chat client as well as a persistent chat add-in application that is attached to a persistent chat room.
  • On Line meeting content management. You can manage the contents of an on line meeting content bin, meeting content sharing stage, and meeting video display sources.

Most Solved Issues

Microsoft solved the problem of viewing the video in the UI Suppression Mode with the Lync 2013 SDK (preview) and now it is working fine but you need to install the latest release of the Microsoft Lync client (15.0.4454.1506) version

Related Information

Lync 2013 SDK training videos for developers
Lync 2013 Developer documentation
Download Microsoft Lync 2013 SDK

Understanding Lync in UI Suppression Mode and Set the Registry


Start developing apps that uses Lync SDK in UI Suppression mode, you must understanding the tradeoffs that you’re making is important; i.e. you are responsible for creating custom versions of almost the entire Lync client user interface. Additionally, your application has to programmatically sign the user into the Lync client using a custom login interface that you are also responsible for creating.

All the user interface elements of the Lync client are not visible when it is running in UI Suppression mode except the VideoWindow control that is used to render video. The VideoWindow control is only available when running in UI Suppression mode. Later in this chapter, you learn how to access the VideoWindow when working with conversations that use the AudioVideo modality.

The Lync controls are not available when the Lync client is running in UI Suppression mode; they are automatically grayed out and disabled. You must create your own custom versions of controls.

Automation is also unavailable when running in UI Suppression mode. Automation provides an easy way to start conversations in all modalities; however, it relies on Lync user interface elements such as the conversationwindow.

Configuring Lync UI Suppression

Lync UI Suppression mode is configured in the registry. When the Lync client is put into UI Suppression mode. To put Lync into UI Suppression mode, you must create and set a registry key called UISuppressionMode in the appropriate location in the Windows registry depending on whether you’re running the 32 – bit or 64 – bit version of the Lync client.

After Setting the Registry to run the Lync client in UI Suppression Mode the client is disappeared and doesn’t opened unless you update the registry again to run outside of UI Suppression Mode

Enable UI Suppression mode in the Lync Client 32-bit Version

Create a key in the registry and name it UISuppressionMode and set its value to 1 in the following location: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Communicator

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Communicator]
"UISuppressionMode"=dword:00000001

Enable the UI Suppression mode in the Lync Client 64-bit Version

Create a key in the registry and name it UISuppressionMode and set its value to 1 in the following location: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Communicator

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Communicator]
"UISuppressionMode"=dword:00000001

Disable the UI Suppression mode in the Lync Client 32-bit

Set the UISuppressionMode registry key value back to 0

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Communicator]
"UISuppressionMode"=dword:00000000

Disable the UI Suppression mode in the Lync Client 64-bit

Set the UISuppressionMode registry key value back to 0

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Communicator]
"UISuppressionMode"=dword:00000000

(Source: Professional Unified Communications Development with Microsoft Lync Server 2010 by George Durzi and Michael Greenlee)

“VC-40” Previously Named “LyncKin” the Great Idea for A Business Solution


LyncKin is a business-oriented, video-conferencing application aimed at cutting costs of video conferencing, and increasing its productivity. It brings the power of Kinect sensor to control Lync video conferencing.

Imagine what can come out of bringing two giants together to form one solution to match the increasing demands of the business market. As a Microsoft partner, EgyptNetwork were one of the early respondents to Microsoft’s call “Be Part of The Movement” to develop Kinect SDK.

Video conferencing in Lync creates more personal experience that helps people get to know each other better and communicate more effectively. On the other hand, Kinect serves as the media broadcaster integrating video and audio capabilities to run side by side with Lync functionality. LyncKin has a user interface that features Kinect capturing the user’s gestures to control the application remotely to easily select the command that they want to go with. This controlling ability of Kinect makes things easier for the video meeting attendees to have their influence on the video conference in a way that serves the business market needs.


LyncKin takes Kinect from the gaming fantasy world into the business reality by using Kinect sensing technologies to let the user – business person – control Lync video conferencing by using body gesturing and speaking. This controlling ability of Kinect makes things easier for the video conference attendees.

With LyncKin, the user is being the conference  controller, they can perform some activities from their place; by using arm-waving gestures at the camera, and voice commands to perform functions where Kinect sensors detects both movements and voice in very sophisticated ways.

It can help to improve how people interact with co-workers, customers and partners through a more personalized collaboration experience. LyncKin is an optimized conferencing solution that can build voice and video collaboration for Microsoft Lync environments.

User Experience:

LyncKin provides a way to use the natural-user interface capabilities of Kinect in business settings.

A rich user experience and a unified interface make it easy for people to work together effectively and frequently even when time or distance prevents in-person meetings.

LyncKin enables businesses to conduct a video conference while many of attendees are scattered in different places, may be in different countries. Users can also use their body motion capabilities to investigate some shared contents.

Features:

During conferences, LyncKin helps users to control the meeting from their places, as it follows:

  • Hands motions can Investigate Lync contacts, select someone to call, start a video conference with them, easily navigate shared meeting contents, and end the call
  • Voice commands can hold, end call, or recognize new meeting attendee.
  • Face recognition for a new meeting attendee and informing others who aren’t in the meeting room textually.

Business Benefits:

  • Add new capability to Lync unified communication tool for more effective collaboration.
  • Reduce cost of video conferencing by using Lync infrastructure.
  • Control Microsoft Lync without need of any additional peripherals.
  • Easily used on thin or rich clients.

You can See a video and download a beta version here

Building Communications Applications With The Lync SDKs


The Lync 2010 SDK includes the Lync controls, a set of Silverlight and Windows Presentation Foundation (WPF) controls that you can use to integrate functionality found in the Lync client directly into your applications.

The SDK also includes the Lync application programming interface (API), a brand – new, managed API for building custom communications solutions. The Lync API is intended to replace the IMessenger and UCC APIs available with Office Communications Server 2007 R2. The IMessenger API was easy to get started with, but was fairly limited in functionality; it was also a little cumbersome to troubleshoot because it used COM interoperability to interact with the running instance of Communicator on the user’s machine.

The UCC API was very difficult to get started with in comparison, but it provided the most power and functionality if you wanted to build a Communicator replacement. Unlike the UCC API, the Lync API requires the Lync client to be running — it reuses the connection that the client has established with the Lync infrastructure. You can configure the Lync client to run in UI Suppression mode —where its user interface is invisible to the user — enabling you to build custom communications clients previously only possible when using the UCC API.

Lync Functionality – Using the Lync Controls in the Applications

Think of the Lync client as being built out of LEGO blocks, each providing a specific piece of functionality such as showing the presence of contacts, organizing contacts into groups, and interacting with contacts by starting instant message or phone conversations. The Lync controls separate the functionality in Lync clients into individual controls that developers can drag and drop into their Windows Presentation Foundation (WPF) or Silverlight applications.

The Lync controls include a control to show the presence of a contact; for example, the presence of a project manager in a CRM system. Controls are also available to easily start an instant message or audio conversation with that contact at the click of a button. With no additional code required.

A set of other controls provides functionality for managing contact lists; for example, to integrate the user’s Lync contact list into an application. You can also use custom contact lists to create and display an ad-hoc list of contacts, such as the account team for a client in a CRM application. Additional controls are available to search for contacts and display the results. Controls are also available to set the current user’s presence, personal note, and location.

Due to their obvious dependence on user interface elements of the Lync client, the Lync controls are not available in UI Suppression mode.

Integrating Lync functionality into applications using the Lync controls allows users to launch communications directly from the application that they are working in without needing to switch to the Lync client. The Lync controls are available in WPF and Silverlight and are extremely easy to use; you only need to drag and drop the appropriate controls into the application, and they work without the need for any additional code.

Communications – Using the Lync API in the Applications

The Lync API object model exposes extensibility points that allow developers to build applications that interact with the running instance of the Lync client. You can use the Lync API to programmatically sign a user into the Lync client and handle events for changes in its state. You can also start a conversation, add participants, handle conversation and participant events, and add contextual data to the conversation.

You can use the Lync API to create subscriptions on attributes of contacts in your contact list; for example, to track when the availability of a particular contact changes. The Lync API also provides functionality to modify attributes of users signed in to Lync, such as changing their presence or publishing a personal note or location.

Like the IMessenger API, the Lync API includes automation: the ability to start conversations in different modalities (such as instant message or audio/video) with a very small amount of code. The functionality in automation simply invokes the necessary Lync user interface elements, such as a Lync conversation that includes the Application Sharing modality so that a user can share her desktop with another user. Because it is dependent on Lync user interface elements, the functionality in automation is not available when the Lync client is running in UI Suppression mode.

In conjunction with the Lync controls, you can use the Lync API to easily add communications functionality into Silverlight, WPF, and Windows Forms applications. For example, you can spruce up a customer relationship management (CRM) application by integrating presence and click-to-call functionality, allowing users to accomplish their work without needing to switch back and forth between the application and the Lync client.

The Lync UI Suppression Mode

When the Lync client is configured to run in UI Suppression mode, its interface is completely hidden from the user. Applications that use Lync UI Suppression are responsible for recreating those user interface elements from scratch. The Lync API with Lync running in UI Suppression mode is the recommended development pattern for applications you would have previously built with the UCC API.

Lync UI Suppression requires that the Lync client is installed on the user’s machine; this eliminates the complexity of managing the connectivity of the application back to the Lync server infrastructure. In UI Suppression, you use the Lync API to replicate some of the functionality available in the Lync client, such as signing users into Lync, retrieving their contact list, and starting and responding to conversations in different modalities.

When working with UI Suppression, you interact with conversations at the modality level—activating individual modalities manually, creating conversations, adding participants, and disconnecting the modalities when the conversation is completed. For example, you can build a Silverlight instant messaging client that provides a completely customized user interface for instant message conversations. In this case, you would be responsible for recreating application functionality and user interface elements such as a contact list and conversation window. You would work directly with the instant message modality, creating a conversation, connecting the modality, sending instant message text to participants, notifying participants when someone is typing, and delivering the instant message text to the participants in the conversation.

Using the Lync API with Lync running in UI Suppression mode, you can build compelling Lync-replacement solutions such as a custom instant messaging client, or a dedicated audio/video conferencing solution.

Working with the UCMA

Although the Lync SDK is used to integrate communications functionality into applications that run on the client, UCMA is typically used to build communications applications that run on the server; for example, hosted in Internet Information Services (IIS), exposed through Windows Communication Foundation (WCF), or running in a Windows Service. A UCMA application is usually a long – running process such as an automatic call distributor used to handle and distribute incoming calls in a call center. Users interact with the UCMA application via an endpoint that can either be a contact in Lync, such as sip:HelpDesk@fabrikam.com, or simply a phone number. The user can start a Lync call, instant message with the UCMA application contact or dial the phone number associated with the application.

Consider the following scenario where Contoso, a fictitious company, uses a UCMA – based application to run its call center operations.

When customers call Contoso’s customer service phone number, the UCMA application picks up the calls and guides callers through a workflow, such as one built with the UCMA Workflow SDK, to gather information from them such as the reason for their call, their account number, and so on. After the workflow gathers the necessary information from the callers, it places them on hold and searches for an agent with the right skills to assist them. Customers remain on hold until an agent becomes available; the UCMA application tracks all the agents’ Lync presence so it knows when an agent becomes available again to handle a call.

When an agent picks up calls, he or she already knows a lot about the callers based on the information they provided. An Agent Dashboard application hosted in the Lync conversation window can display information about the caller such as order history or any open customer service tickets that require attention. The agent can use this information to provide better service to the customer.

An application such as the customer service Agent Dashboard is built using the Lync SDK, including the Lync controls and the Lync API. The UCMA application interacts with the Agent Dashboard using the Context Channel, a new feature in UCMA 3.0 that provides a channel across which a UCMA application and Lync SDK application can send information to each other. For example, if the agent realizes that he needs to consult another agent to help with the call, he can issue an “escalate” command from the Agent Dashboard application. The command is sent across the context channel to the UCMA application, which knows how to process it and look for another available agent with the necessary skills to assist with the call.

Part of a supervisor’s duties in Contoso’s customer service department is to monitor the performance of agents and coach them on how to provide better service to customers. The supervisor can launch a Supervisor Dashboard application that shows a list of all active calls. The supervisor selects a call to silently join, allowing him to monitor the call without the knowledge of either the customer or agent. The new audio routes functionality in UCMA 3.0 enables developers to build routes across which audio can travel in a conference, effectively controlling who can hear what. When the supervisor is monitoring a call, audio flows to her from the conference but doesn’t flow back in, allowing her to listen in to a call without being heard. If the supervisor needs to provide coaching to the customer service agent, an audio route is established from the supervisor to the agent, allowing her to “whisper” to the agent without the customer hearing any of the conversation.

UCMA 3.0 includes several other enhancements that are covered in more detail later in the book, including an easier development experience for working with presence and conferences, and a feature known as auto – provisioning, which greatly simplifies the process of managing the plumbing and configuration information required to run a UCMA application.

Building Workflow Applications with the UCMA Workflow SDK

You use the UCMA Workflow SDK to build communications – enabled workflow solutions such as IVR systems and virtual personal assistants. You typically use an IVR system to gather information from a caller such as the customer account number and reason for the call before connecting him or her to a live agent. A virtual personal assistant, on the other hand, provides services to the caller such as the ability to reserve a conference room from a mobile phone.

For a more concrete example, consider this scenario. In the legal industry, potential cases need be vetted for any conflicts of interest that could prevent the firm from being able to take on the case. This process is referred to as new matter intake, and each potential case is called a matter. Most law firms have software in place to streamline this process; however, such a solution can be extended to provide users with the ability to call in and check on the status of a new matter.

For example, an attorney could place a call to the New Matter Intake application contact in Microsoft Lync from her mobile phone. Using text – to – speech technology, the IVR prompts the attorney to enter her identification PIN and validates her identity. The IVR can then execute code to access the database, retrieve a list of outstanding matters for that attorney, and prompt her to select one. After the attorney selects a matter, the IVR can again access the database to identify the conflicts attorney assigned to the matter. The IVR can now check the presence of the conflicts attorney, and if he is available, ask the caller whether she wants to be transferred. The IVR can then perform a blind transfer of the call and disconnect itself from the call.

The UCMA 3.0 Workflow SDK enables developers to visually construct communications-enabled workflows by dragging workflow activities onto a design service, arranging and connecting them to form the workflow solution. You can construct workflows to accept audio or instant message calls, or both.

In the case of audio calls, input from the user can be in the form of dual-tone multi-frequency (DTMF) tones (choosing an option by entering its corresponding number using the phone’s keypad), speech recognition, or both. The text-to-speech engine, available in 26 different languages, converts text to prompts that the caller hears during different activities of the workflow. You can also substitute professionally recorded audio prompts to give the IVR a more polished feel.

The previous attorney example represents an incoming communications workflow; however, developers can also build outgoing communications workflows. For example, a person might receive an automated call from the Service Desk asking him to rate his experience with a ticket he recently opened. The communications workflow can ask him several questions, such as his satisfaction with how the ticket was handled, and then save the results of the survey to a database when the call is completed.

Workflows are a critical part of a communications solution, allowing the software to provide services to a caller and only transferring the call to a live customer service agent—the comparatively more expensive resource—if necessary and only after providing the agent with all the relevant information about the caller.

(Source: Professional Unified Communications Development with Microsoft Lync Server 2010 by George Durzi and Michael Greenlee)

Microsoft Lync Server


Microsoft Lync Server (previously Microsoft Office Communications Server OCS and Microsoft Live Communication Server LCS) is an enterprise real-time communications server, providing the infrastructure for enterprise instant messaging, presence, file transfer, peer-to-peer and multiparty voice and video calling , ad-hoc and structured conferences (audio, video and web) and, through a 3rd party gateway or SIP trunk, PSTN connectivity. These features are available within an organization, between organizations, and with external users on the public internet or standard phones, on the PSTN as well as SIP trunking.

Versions History

  • 2013 – Microsoft Lync Server 2013
  • 2010 – Microsoft Lync Server 2010
  • 2009 – Office Communications Server 2007 R2
  • 2007 – Office Communications Server 2007
  • 2006 – Live Communications Server 2005 with SP1
  • 2005 – Live Communications Server 2005, codenamed Vienna
  • 2003 – Live Communications Server 2003

Client software and devices

Microsoft Lync is the primary client application released with Lync Server. This client is used for IM, presence, voice and video calls, desktop sharing, file transfer and ad hoc conferences. Microsoft also ships the Microsoft Attendant Console. This is a version of the Lync more oriented towards receptionists or delegates / secretaries or others who get a large volume of inbound calls.

Other client software and devices include:

  • Lync Communicator Mobile is a Mobile edition of the Lync Server 2010 client and designed to offer similar functionality including voice calls, instant messaging, presence and single number reachability. Clients for all major platforms including the IPhone are being developed
  • Lync Communicator Web Access is a web instant messaging and presence client. This version works as well on IE, Firefox and Opera browsers.
  • Microsoft RoundTable is an audio and video conferencing device that provides a 360-degree view of the conference room and tracks the various speakers. This device is now produced and sold via Polycom under the product name CX5000.
  • LG-Nortel and Polycom also make IP phones in a traditional phone form factor that operate an embedded edition of Office Communicator 2007. The physical plastic phones as referred by Microsoft are also named Tanjay Phones.

Features

One basic use of Lync Server is instant messaging and presence within a single organization. This includes support for rich presence information, file transfer, instant messaging as well as voice and video communication. (These latter features are often not possible even within a single organization using public IM clients, due to the effects of negotiating the corporate firewall and network address translation). Lync uses Interactive Connectivity Establishment for NAT traversal and TLS encryption to enable secure voice and video both inside and outside the corporate network.

Lync Server also supports remote users, both corporate users on the internet (e.g. mobile or home workers) as well as users in partner companies. Lync supports “federation” – enabling interoperability with other corporate IM networks. Federation can be configured either manually (where each partner manually configures the relevant edge servers in the other organization) or automatically (using the appropriate SRV records in the DNS).

Microsoft Lync Server uses Session Initiation Protocol (SIP) for signaling along with the SIMPLE extensions to SIP for IM and presence. Media is transferred using RTP/SRTP. The Live Meeting client uses PSOM to download meeting content. The Communicator client also uses HTTPS to connect with the web components server to download address books, expand distribution lists, etc. By default, Office Communications Server encrypts all signaling and media traffic using SIP over TLSand SRTP. There is one exception to this – traffic between the Mediation Server and a basic media gateway is carried as SIP over TCP and RTP. However, if a hybrid gateway is leveraged, such as one from Microsoft’s Open Interoperability Site, then in fact everything is encrypted from all points if (SSL certificates are configured on the gateway and TLS elected as the transmission type).

IM is only one portion of the Lync suite. The other major components are VOIP telephony and video conferencing through the desktop communicator client. Remote access is possible using mobile and web clients.

Several third parties have incorporated Lync functionality on existing platforms. HP has implemented OCS on their Halo video conferencing platform.

Microsoft released Microsoft Office Communications Server 2007 R2 in February 2009. The R2 release added the following features

  • Dial-in audio conferencing
  • Desktop sharing
  • Persistent Group Chat
  • Attendant console and delegation
  • Session Initiation Protocol trunking
  • Mobility and single-number reach